Wednesday, December 31, 2008

IP ADDRESS

IP Addresses
In order for systems to locate each other in a distributed environment, nodes are given explicit addresses that uniquely identify the particular network the system is on and uniquely identify the system to that particular network. When these two identifiers are combined, the result is a globally-unique address.


This address, known as “IP address”, as “IP number”, or merely as “IP” is a code made up of numbers separated by three dots that identifies a particular computer on the Internet. These addresses are actually 32-bit binary numbers, consisting of the two subaddresses (identifiers) mentioned above which, respectively, identify the network and the host to the network, with an imaginary boundary separating the two. An IP address is, as such, generally shown as 4 octets of numbers from 0-255 represented in decimal form instead of binary form.
For example, the address 168.212.226.204 represents the 32-bit binary number 10101000.11010100.11100010.11001100.


The binary number is important because that will determine which class of network the IP address belongs to. The Class of the address determines which part belongs to the network address and which part belongs to the node address (see IP address Classes further on).
The location of the boundary between the network and host portions of an IP address is determined through the use of a subnet mask. This is another 32-bit binary number which acts like a filter when it is applied to the 32-bit IP address. By comparing a subnet mask with an IP address, systems can determine which portion of the IP address relates to the network and which portion relates to the host. Anywhere the subnet mask has a bit set to “1”, the underlying bit in the IP address is part of the network address. Anywhere the subnet mask is set to “0”, the related bit in the IP address is part of the host address.


The size of a network is a function of the number of bits used to identify the host portion of the address. If a subnet mask shows that 8 bits are used for the host portion of the address block, a maximum of 256 host addresses are available for that specific network. If a subnet mask shows that 16 bits are used for the host portion of the address block, a maximum of 65,536 possible host addresses are available for use on that network.


An Internet Service Provider (ISP) will generally assign either a static IP address (always the same) or a dynamic address (changes every time one logs on).
ISPs and organizations usually apply to the InterNIC for a range of IP addresses so that all clients have similar addresses.


There are about 4.3 billion IP addresses. The class-based, legacy addressing scheme places heavy restrictions on the distribution of these addresses.
TCP/IP networks are inherently router-based, and it takes much less overhead to keep track of a few networks than millions of them.
IP Classes


Class A addresses always have the first bit of their IP addresses set to “0”. Since Class A networks have an 8-bit network mask, the use of a leading zero leaves only 7 bits for the network portion of the address, allowing for a maximum of 128 possible network numbers, ranging from 0.0.0.0 – 127.0.0.0. Number 127.x.x.x is reserved for loopback, used for internal testing on the local machine.


Class B addresses always have the first bit set to “1” and their second bit set to “0”. Since Class B addresses have a 16-bit network mask, the use of a leading “10” bit-pattern leaves 14 bits for the network portion of the address, allowing for a maximum of 16,384 networks, ranging from 128.0.0.0 – 181.255.0.0.


Class C addresses have their first two bits set to “1” and their third bit set to “0”. Since Class C addresses have a 24-bit network mask, this leaves 21 bits for the network portion of the address, allowing for a maximum of 2,097,152 network addresses, ranging from 192.0.0.0 – 223.255.255.0.


Class D addresses are used for multicasting applications. Class D addresses have their first three bits set to “1” and their fourth bit set to “0”. Class D addresses are 32-bit network addresses, meaning that all the values within the range of 224.0.0.0 – 239.255.255.255 are used to uniquely identify multicast groups. There are no host addresses within the Class D address space, since all the hosts within a group share the group’s IP address for receiver purposes.


Class E addresses are defined as experimental and are reserved for future testing purposes. They have never been documented or utilized in a standard way.

IP VERSIONS
The Internet Protocol (IP) has two versions currently in use (see IP version history for details). Each version has its own definition of an IP address. Because of its prevalence, "IP address" typically refers to those defined by IPv4.

IPv4 uses 32-bit (4-byte) addresses, which limits the address space to 4,294,967,296 (232) possible unique addresses. However, IPv4 reserves some addresses for special purposes such as private networks (~18 million addresses) or multicast addresses (~270 million addresses). This reduces the number of addresses that can be allocated as public Internet addresses, and as the number of addresses available is consumed, an IPv4 address shortage appears to be inevitable in the long run. This limitation has helped stimulate the push towards IPv6, which is currently in the early stages of deployment and is currently the only contender to replace IPv4.
IPv4 addresses are usually represented in dotted-decimal notation (four numbers, each ranging from 0 to 255, separated by dots, e.g. 147.132.42.18). Each part represents 8 bits of the address, and is therefore called an octet. It is possible, although less common, to write IPv4 addresses in binary or hexadecimal. When converting, each octet is treated as a separate number. (So 255.255.0.0 in dot-decimal would be FF.FF.00.00 in hexadecimal.)

IPv4 address networks
In the early stages of development of the Internet protocol,network administrators interpreted IP addresses as structures of network numbers and host numbers, with the highest order octet (first eight bits) of an IP address designating the "network number", and the rest of the bits (called the "rest" field) used for host numbering within a network. This method soon proved inadequate as local area networks developed that were not part of the larger networks already designated by a network number. In 1981 IP protocol specification was revised with the introduction of the classful network architecture.


Classful network design allowed for a larger number of individual allocations. The first three bits of the most significant octet of an IP address came to imply the "class" of the address instead of just the network number and, depending on the class derived, the network designation was based on octet boundary segments of the entire address. The following table gives an overview of this system.

When someone manually configures a computer to use the same IP address each time it powers up, this is known as a Static IP address. In contrast, in situations when the computer's IP address is assigned automatically, it is known as a Dynamic IP address.

Method of assignment
Static IP addresses get manually assigned to a computer by an administrator. The exact procedure varies according to platform. This contrasts with dynamic IP addresses, which are assigned either randomly (by the computer itself, as in Zeroconf), or assigned by a server using Dynamic Host Configuration Protocol (DHCP). Even though IP addresses assigned using DHCP may stay the same for long periods of time, they can generally change. In some cases, a network administrator may implement dynamically assigned static IP addresses. In this case, a DHCP server is used, but it is specifically configured to always assign the same IP address to a particular computer, and never to assign that IP address to another computer. This allows static IP addresses to be configured in one place, without having to specifically configure each computer on the network in a different way.
In the absence of both an administrator (to assign a static IP address) and a DHCP server, the operating system may assign itself an IP address using state-less autoconfiguration methods, such as Zeroconf. These IP addresses, known as link-local addresses, default to the 169.254.0.0/16 address range in IPv4.

Uses of dynamic addressing
Dynamic IP addresses are most frequently assigned on LANs and broadband networks by Dynamic Host Configuration Protocol (DHCP) servers. They are used because it avoids the administrative burden of assigning specific static addresses to each device on a network. It also allows many devices to share limited address space on a network if only some of them will be online at a particular time. In most current desktop operating systems, dynamic IP configuration is enabled by default so that a user does not need to manually enter any settings to connect to a network with a DHCP server. DHCP is not the only technology used to assigning dynamic IP addresses. Dialup and some broadband networks use dynamic address features of the Point-to-Point Protocol.

Uses of static addressing
Some infrastructure situations have to use static addressing, such as when finding the Domain Name Service directory host that will translate domain names to IP addresses. Static addresses are also convenient, but not absolutely necessary, to locate servers inside an enterprise. An address obtained from a DNS server comes with a time to live, or caching time, after which it should be looked up to confirm that it has not changed. Even static IP addresses do change as a result of network administration.

No comments: